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The system of equations which has been proposed in earlier papers cl,21 
for the representation of the dynamics of soft soils is very complicated. 
However, for the study of various particular problems it is possible to 
simplify this system. It has been thought, therefore, desirable to 
establish a way of characterizing any concrete problem so that the 
possible simplifications for each case and the simplification in the 
system of equations is taken advantage of. In this paper a complete 
classification of any possible problem is given for the system of equa- 
tions and a simplified version of the system for each class of problem 
is derived. 

1. 'Ihe equations derived in El,21 have the form 
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I* G + SijSij 

In these equations certain empirical functions appear which serve to 

characterize the soil 

P = f (‘A e,), I, = F (p), G = C P,) (4.2) 
A method for determining these functions by means of dynamic and 

static experiments has been indicated in 11,21 and some results of such 
experiments are contained in [3,41 . 

‘Ihe fundamental problem of soil mechanics, arising from this system 

of equations (1. l), consists of the following: Let there be given a 
region Q, filled with the medium, initially at rest. On part of the 
boundary of this region the stresses P, are given and on the remainder 
of the boundary, the deformations u are known as functions of the co- 
ordinates of the boundary and of time. It is required to determine the 
ensuing motion of the medium and the distribution of stresses. 

The given boundary functions I’,, and u may always be represented in 

the form 

(1.3) 

where lI, and U are dimensionless functions of dimensionless arbments, 
so that boundary conditions may be inserted into the mathematical 
formulation of the problem by means of the parameters u,,, V,,, t0 and I, 
which characterize the magnitude of the stresses, velocities, times and 
linear dimensions. Different classes of problems will be defined for 
the same boundary conditions through differences in the numerical values 
of these parameters. In order that the classification may be carried 
out, it is necessary that these parameters be supplemented by additional 
ones contained in the systems of equations (1.1). To express properly 
these parameters, we observe that relation (1.2) may always be repre- 
sented in the form 

p = Kf (e, O*), I, = usa F (p 1 a,), G = G, g w 
f (0, 0,) - 8, Iy+%) --, 1, R w - I (1.4) 
e+a l e,+mlne. 
8,4mInO. 
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We introduce the notation 

Experiments show that 

fn addition, one may deduce that S, is of the same order as G,, or 

smaller, i.e. 

S&S, (1.7) 

Thus, the parameters necessary for the description also include K, 

G 0’ o*, s co, p. so that the complete system of constants essential to 

define the problem parametrically takes on the form 

60, V,,, tar 1, K, Go. o,, S,, PO @*8) 

It is necessary to mention that in cases for which the boundary con- 

ditions are given only in terms of the stresses or only the deformations, 

the system will contain only one of the two parameters, u. or V0 and 

there will be another relation connecting them. 

‘Ihe classification will reduce, in the end, to establishing certain 

estimates and inequalities for dimensionless combinations, formed from 

the parameters in (1.8). When these are satisfied, there will be corre- 

sponding simplifications of the general system of equations (1.1). 

2. We first consider the purely elastic case, when aa < u and 

u. Q Vote is very small. For this case h E 0 in equation (1.f) and the 

relation between the stress deviator tensor and the velocity of de- 

formation in system (1.1) may be written in the form 

We are able to produce estimates of the different terms in this rela- 

tion by assuming that 

(2.2) 

where the functions Vi, Eij and their derivatives with respect to the 

dimensionless arguments have order of magnitude unity. We obtain from 

(2.1) 
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(2.3) 

Since in this u,, +., u* << G,,, then from (2.3) it follows that 

(2.4) 

This means that the displacement uO - V,,‘ot,, and the deformations uO/2 

are small and, in the expressions for the total derivatives with respect 
to time, one can neglect the convective terms, i.e. 

D d a 
(2.5) 

The system (1.1) is then transformed so that it becomes 

hi as. * P~~=P&--&+$. i $+g+=o i 
(2.6) 

p = KB, 

The second and the fourth of these equations can be integrated and, 

together with the third, one has Ilooke’s law 

where ui are the displacements. In this manner for this 
(1.1) goes over into the usual equations for the linear 
elasticity. 

For equation (2.6) it is interesting to consider two 
of motion - dynamic and quasi-static. In the first case 
in the momentum equation are of the same order 

PO+? 

Comparing this with (2.4) we obtain 

1 
-- 

to f 
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PO ’ 0 - PO'VOC 

case, the system 
theory of 

basic classes 
all the terms 

(2.8) 

and since cr,, - K8 *COO, it follows that I’,, * 0C. In these estimates C 

is the characteristic velocity of an extensional (dilatational) elastic 
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wave. All of these are well-known relations for elastic waves. In the 

case where the motion is quasi-static, one has 

(2.9) 

This condition defines a scale of time to of the boundary functions 

(1.3) for which elastic waves may be neglected. If one introduces a 

“wave” time scale t, - Z/C, then condition (2.9) can be written in the 

form 

to > ttu (2.10) 

3. Let us next consider elastic-plastic motion but with small de- 

formations. Here, as in the previous case, CT,, - u , u,, * V,,to << 1 but 
h # 0. It is clear that the estimate of (2.5) still holds. Evaluating 

approximately the terms in the elasto-plastic flow law 

yields 

(3.1) 

On the right-hand side of this relation all of the terms must be of 

the same order (elastic and plastic components of deformation are of 

equal order in the case under consideration). ‘lhis is possible if 

(3.2) 

Satisfying condition (3.2) reduces imnediately to fulfilling condi- 

tion (3.1) and, further, this condition is reduced to (2.4). Ilynamic 

conditions resulting from these estimates for u,, and V,,, and also quasi- 

static conditions hold just as in the preceding case. System (1.1) goes 

over into the following: 

as . 
po$=poF:-~++, P = f (fi, e.1 i j 

g+$o, &=ge(e-e,)e($) 

Go($+~-~~bij)=~ asij + hS*j 

A _ 2Cow-Fw splat 
2F (PI 

e 11% - F (p)le [2G.W - F’ @) &] 

(3.3) 

4. We now consider motions with large elastic-plastic deformations, 
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but for moderate stresses, i.e. cases in which Vat,, w. I and o << 
u0 << G,. This is a realistic and practically interesting cas: because, 
for example, if CT* - 0.5 kg/cm* and G, % lo3 kg/cm*, then we are dis- 
cussing stresses of the order of u0 * 10 kg/cm* - 100 kg/cm*. In this 
case 

GoVoto 7B-f (4.1) 

and from relation (3.1) (the flow relation) it follows that the elastic 
components in the flow relation may be neglected. ‘Ihe equation of con- 
tinuity is transformed into a relation useful for estimating 

$+T-0 

It is easy to show that for p - u,, - 10 kg/cm* - 100 kg/cm*, 8 * lo-*. 
From this and from the previous relation it follows that terms contain- 
ing derivatives of the density may be neglected. Finally an estimate of 
the terms in the momentum equation for the dynamic problem yields 

Po (2 + y) - + or Qo - poVo2 (4.2) 

Consequently these equations remain invariant (as to their form) with 
only the substitution of p,, for p, of course. 

In this way, for this case, from system (1.1) we obtain 

(4.3) 

We observe after this, that with the pressure distribution obtained 

from (4.3), the problem of finding the density distribution may be 
solved separately with the help of the relation p = f(0, g*) and the 
functions +/at + Vi ap/aXi’ 

In the case under consideration, the dynamic condition of motion 

yields 

(4.4) 

It is now necessary to note that everything mentioned up to this 
point has referred only to the region of motion, ,distant from a wave 
front. In the region adjoining such a front, the situation will be as 
in the previous case since from the compatibility condition at the wave 
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front the following estimates on the motion near the front can be made 

to - t,, v, - ec, a, - poecp 

Thus in the region near the front the motion will be described by 
the system (3.3). Tt is necessary, however, to bear in mind that in 
problems for wllich, in the near-front region, the gradients are large 
and the wave propagates over distances significantly greater than the 
wave length (short waves) it is necessary to take into account the con- 
vection terms in the derivative with respect to time. Tn that case the 
fundamental equations can be significantly simplified by using the work 
considered in I31 and carrying out a relatively simple analysis which 
will not be taken up here. 

lhus, in the case under consideration, two types of dynamic motion 

of the medium are possible: in the ante-frontal zone, where the motion 
has quite strongly a wave character, and far from the front where the 
wave effects can be neglected and the motion can be described as an in- 
compressible fluid flow. One must observe that the same kind of situ- 
ations occur in describing capillary motion of fluids (water, for ex- 
ample) which also possess very small compressibility. ‘Thus, for an under- 
water explosion, the motion is to be understood as quite rapidly divid- 
ing into two separate parts with essentially different character in 
each - pre-frontal motion and motion near the gas bubble; in the first, 
compressibility is important and the motion propagates in a wave-like 
manner; in the second, the motion is very well described within the 
framework of ideal, incompressible fluid theory. obviously, the reason 
for this division in the case of a capillary flow and in the case of 
soils considered here, is the same, namely the small compressibility of 
the medium. 

Although the simplified systems of equations, describing the motion 
in t!le .pre-frontal region and in the region far from the front, are 
different, it is possible to form a single unified system which goes 
over automatically to the correctly corresponding system in one or the 
other of the two indicated regions. llle unified system has the form 

(4.5) 
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This system differs from the system for the pre-frontal region only 
in the presence of the convective terms in the total derivative of the 
velocity with respect to time, so that when these terms are small the 
system 
system 
sys tern 
in all 
small. 

does not, in fact, differ from system (3.3). On the other hand, 
(4.5) in the region far from the front, differs but little from 

(4.3), since in this region the derivatives with respect to time 
of the equations, except in the momentum equation, are negligibly 

Ihe quasi-static condition, in the case under consideration, will 
clearly hold when 

(4.6) 

i.e. here we have a stronger condition than in the previous case, for 
which (2.10) was sufficient. We note that with u0 w 10 - 100 kg/cm’ the 
value of 0 Q lo-’ and for I b 10 m and C * 10’ m/set we have t,,,/J 8 w 

1 set, i.e. the quasi-static condition requires that t,, >> 1 sec. ‘INS, 

for any problem in ordinary structural mechanics of foundations this 
condition is always satisfied. Only for explosions and shocks should 
one use the description given by the dynamic equations. 

In order to satisfy condition (4.6), the basic equations are obtained 

from (4.3) in the form 

aP asij lb. 
-- 

L3Xi + az. -I- POE = 0, ‘=O 
3 

axi 

_3++ 
j 

&e [Ia - F @)I e (W) Sii 
(4-V 

These are equations for a rigid-plastic quasi-static flow of soil 
with developing plastic deformations or, equations of a medium in a 
“limiting equilibrium” state. In the special case of a planar problem 
one is able to obtain two-dimensional equations for static equilibrium 
for a rigid or brittle material hl . Indeed, from the flow law we have 
S zz = 0, so that the condition of plasticity reduces to the form 

$ [(off + p)” + (0, + P)” + 2oxrFl = F @) 

and further 

0 22=-P or p = - f (0, + tJ& 

This in its turn reduces to a plasticity condition, finally, in the 
form 

f [(% - ov,,)’ + 4c1,,p1 = F [-- f (un + a,)] 
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In the case in which F(p) = (kp + b12 (see, for example, [3,41) we 

have 

$ [hc, - 0,)” + 40,.9 = q [-@XX + $3 + 2 +I 

In [71, the condition of limiting equilibrium has the form 

a [bx - u,y + 4u,‘L] = F [- (a, + Ow) + W]S 

where p is the interior angle of the flow and II is the cohesion . 

Thus we see that except for differences in notation these conditions 

coincide. Supplementing this relation by the equation of equilibrium 

aa, 
ax + ay 

“Qxa, + poF: = 0, -I- ~8: = 0 

we obtain a system of three equations for uxx, u 
prise a unique basis for states of a pulverulent’iateria 

and ~~~~dfch com- 

It may now be observed that these equations are insufficient for a 

natural statement and proper solution of problems of statics of a 
pulverulent material even for the plane case (not even mentioning the 
fact that the statics of a pulverulent medium generally does not have 
equations in the spatial case). Secondly, even problems formulated in 
terms of the stresses are impossible to solve with confidence without 
constructing the velocity field. An analogous situation existed in the 
theory of plasticity until a relatively short time ago, when the neces- 
sity became obvious of constructing a velocity field and where it was 
necessary to introduce in the course of the study a specially termed 
“complete solution” - for describing the solution containing the con- 
structed velocity field. Just as certain solutions of plane problems in 
the theory of plasticity are unsatisfactory because for these it can be 
shown that it is impossible to construct a velocity field; one can find 
such solutions also in statics of pulverulent media. 

‘l&e derived system (4.7) allows for the study of not only plane prob- 

lems but all arbitrary spatial problems in the state of limiting equi- 

librium, and not only problems formulated in terms of the stresses but 

also problems with any mixed boundary conditions, i.e. any problem with 

a natural formulation. It must be said, of course, that there exist 

static problems (and, indeed, dynamic ones in which the main, and 

perhaps the only, cause for the origination of deformation is the com- 

pressibility of the medium (uniaxial compression, for example) and for 
the solution of these problems it is to be understood that the equations 

(4.7) are not usable. In these cases it is necessary to begin with the 
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complete equations (1.1) for the quasi-static case. 

5. We consider next the case in which the elastic-plastic deforma- 

tions are large, i.e. Vat, Q 1 and the stresses are large, i.e. uO Q S,. 
If S, << G, then this will be the same as the previous case. If, however, 

S, - $9 then none of the simplifications for the equations (1.1) that 
have been carried out are possible. This is because in this case 8 will 
not be small: 8 w 1. ‘Ihe quasi-static condition remains in the form 
(4.6). For the case of dynamic motion there will not be a subdivision 
into two types here because with 8 w 1 motion either near or far from 
the front must be represented by the complete equations (1.1). 

6. Finally, for the case in which one has flow with very large 
stresses a0 >> S, by virtue of which Sij -S, << uO -p, it is possible 

to neglect everywhere the tangential stresses, and system (1.1) goes 
over to the equations for an ideal, compressible fluid with possible 

irreversible deformations 

(6-l) 

A consideration of quasi-static motion for this case is not interest- 

ing since here it is trivial. 

This exhausts the study of all of the essentially different types of 

soil motion. 

It is clear that an analogous analysis can be carried out for any 

other solid material (for plastic metals, for example) and, the results 
will be completely similar to those obtained here. 
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